A Correction To Brian Mirtich’s Thesis: “Impulse-based
Dynamic Simulation of Rigid Body Systems”

Rahil Baber

15" February 2011

rahilbaber@hotmail.com

Contents

1 Introduction
1.1 The Error e,
1.2 AnExample e e e

2 Variables And Conventions

3 The Maths
3.1 Rotating The Space e
3.2 TheCollision Matrix K e
3.3 Calculating The Separation Velocityu
3.4 The Termination Condition
3.5 DealingWithu, =u, =0 o
3.6 Stable Sticking L. e
3.7 Unstable Sticking
3.8 Finding The DivergingRay
3.9 Calculating u On The DivergingRay
3.10 Proving There Exists A Unique DivergingRay
3.11 Proving The Algorithm Terminates

4 The Algorithm

5 2D Collisions
5.1 Variables And Conventions e e
5.2 The Algorithm e

6 Final Remarks

10

10

11

12

13

14

15

16

18

19

21

23

25

29

29

29

33

Appendices

A Constructing The Rotation Matrix

B Showing K Is Positive Definite

C Showing Trajectories Converge To Rays

34

34

35

36

1 Introduction

Firstly let me say that if you’re interested in rigid body simulation Brian Mirtich’s thesis, entitled
“Impulse-based Dynamic Simulation of Rigid Body Systems”, is a great resource and well worth
reading. A copy can be found at:

http://www.kuffner.org/james/software/dynamics/mirtich/index.html

I was particularly interested in how to simulate collisions with friction which is covered in Chapter
3. Unfortunately at the end of Section 3.4.2 there is a flaw in his argument which means his method
of finding the impulse has to be changed slightly. This document is intended to highlight that and to
provide a reworking of the algorithm. This document does not cover resolving contact forces between
objects at rest (of which I'm still unsure of the best way to deal with), rather we deal only with objects
colliding with some non-negligible velocity.

If you only care that the simulation looks right, then the algorithm given in the thesis is more than
adequate (as nobody has reported any unrealistic behaviour since its publication in 1996). If however
you are concerned about keeping to the laws of physics (even though there is no such thing as a totally
rigid body) then later in this document I’ll outline a corrected version of the algorithm, which as an
added bonus should be easier to implement.

1.1 The Error

This section and Section 1.2 are perhaps in the wrong place. It would make more sense to place
them at the end of this document, after I’ve gone over all the variable definitions and maths behind the
algorithm. However, I want to provide a strong motivation early on for why this document is necessary
and why you should continue reading it. The content is mainly aimed at those who are familiar with
Chapter 3 of the thesis. Those who are not should still be able to follow the argument, though will
have to take what I say on faith. Feel free to skip ahead to Section 2.

Let me begin by describing where I think the flaw occurs in Mirtich’s argument. Basically his algorithm
involves integrating various formulas with respect to p, (a component of impulse). Unfortunately
working out the limits of integration is problematic using p,, so instead he does a change of variable to
u, (a component of the separation velocity). However, for this change of variable to be valid he needs
du,/dp, to be positive. Annoyingly this isn’t always true, there exist pathological examples where the
larger the normal force you apply to separate the objects the more they accelerate towards each other.
He argues that although du/dp, may not initially be positive it will eventually become positive and
stay positive for the rest of the calculation. So far I'm happy to believe everything he has said. He
then goes on to say that if du /dp, is initially negative then integrate using p, until du. /dp, becomes
positive then proceed as normal using u, instead. This is where I think a problem lies, essentially he
is assuming that once it is positive it stays positive. This is subtly different to the fact that eventually it
is positive and stays positive. To illustrate my point see Figure 1.

Maybe he meant to say once du, /dp, is positive it stays positive, but unfortunately I can construct
examples in which it starts positive and turns negative. This means we can’t change to integrating with
respect to u,. Another consequence is that colliding objects may undertake a compression phase, then
a decompression phase, followed by another compression phase, and then a final decompression phase

) y =a3) y=a’—2u

Figure 1: As z increases both 2% and 23 — 22 eventually become positive and stay positive,
but only 2 has the property that once it is positive it stays positive.

before the objects separate. The algorithm outlined in the thesis only supposes one compression phase
and decompression phase occurs, which is a problem that needs addressing.

I should point out that none of my claims have been verified by anyone else. I did contact James
Kuffner who hosts the thesis, about a possible mistake, he forwarded my e-mail to Brian Mirtich.
Brian Mirtich did reply saying that he would have a look at it, but he would have to re-read his thesis
before he could answer any of my questions. So there maybe nothing wrong with the thesis and it’s
just my poor understanding of what was actually written (in which case I’d appreciate it if you’d let
me know). In any case let me continue, arrogantly assuming I’m correct.

1.2 An Example

For those who think I’'m wrong I’ll construct an example which I believe verifies my claims. Although
it is a pathological example finding such examples isn’t hard. With a bit of effort a more reasonable
example could probably be found. I will provide values to setup a collision, so that others (if so
inclined) can simulate it and check that du, /dp, can turn from being positive to negative, and that two
pairs of compression decompression phases can occur. If you don’t know how to simulate the collision
I suggest you skip ahead to the next section, where I start defining the variables and conventions I will
use. From there you can either delve into the maths we will use to simulate the collision or just skip to
the sections where I describe the algorithm (Sections 4 and 5).

I’ll ignore the units of measurements as they are unimportant as long as we are consistent. Let the
coefficient of friction p be 0.5, and the coefficient of restitution e be 0.9. The two objects collide
such that the normal force acts in the z direction, and the components of their separation velocity
Ug, Uy, U, are initially 630, —780, —0.22 respectively. Because u, < 0 we know they are colliding
and an impulse is needed to cause them to move away from each other. Let one of the colliding objects
have infinite mass so that the inverse of its inertia tensor is the zero matrix. Consequently it will make
no contribution to the collision matrix KX (a matrix used to help us compute impulses). If you are
uneasy with infinite mass objects, you can instead give it a sufficiently large but finite mass such that

its contribution to K is negligible. The other object has a mass of 1, and an inverse inertia tensor of

9 6 -6
6 6 =2
-6 -2 9

Note that its eigenvalues are approximately 17.8, 5.6, and 0.5 implying it’s a positive definite matrix
and hence a valid inverse inertia tensor. The collision occurs at a position of (1,1, 1) relative to the
centre of mass of the object of mass 1. (Where the collision occurs on the other object is unimportant).
All this information allows to compute the collision matrix,

20 —-23 4
K=1-23 31 -7
4 -7 4

It has eigenvalues which are approximately 50.5, 3.5, and 1.0, proving that it is positive definite (a
good sanity check). Using K we can plot u, versus p, see Figure 2. u, starts at —0.22, and du, /dp,
is positive, eventually u, becomes positive and reaches a local maximum at p, = 22.5. Then we see
du /dp, become negative as claimed. When u,, is negative the collision is in a compression phase and
when it is positive it is in a decompression phase. The graph has roots at approximately 14.6, 29.8,
and 56.0 hence there are two compression phases and two decompression phases, proving my other
claim.

Uz

/ pz

Figure 2: A graph of u, versus p,.

2 Variables And Conventions

Figure 3: The red arrows indicate the directions in which x, y, z increase in our right handed
coordinate system. The purple arrows give an example of an angular velocity w and the
direction it causes the green box to rotate.

Keeping track of the motion of the objects requires a large number of variables. This section’s purpose
is to collate all the relevant variable definitions into one place, making it hopefully easier to lookup
what the variables in formulas mean. However, first let us go over some conventions and notation.

It is essential we are clear about our sign conventions and adhere to them strictly to ensure we don’t
introduce sign errors. We will use a right handed coordinate system, with axis labelled z, vy, z, see
Figure 3. An angular velocity w is a 3-dimensional vector. It indicates the number of radians per
second by its magnitude |w/|, and the axis of rotation via its direction w/|w|. Our convention for the
direction of rotation will be that an object moves anticlockwise when looking at it in the opposite
direction to the axis of rotation, see Figure 3. We will always take an object’s centre of mass (which
I’1l abbreviate to CM) as the point it is rotating about. I find this choice of pivot separates out the linear
and angular motion more cleanly.

A lot of the variables we will be manipulating will be 3-dimensional vectors, such as the linear and
angular velocities. A natural way to transform and manipulate vectors is via matrix multiplications.
Taking the cross product of two vectors is a common operation that we will wish to perform. Let a
and b be any two 3-dimensional vectors. We can write their cross product as follows

Ay b, ayb, —a.by 0 —a. ay by
ay | X | by | = | azby —azb, | = | a 0 —a, by
a, b azby — ayby —ay Ay 0 b,

Let a denote the matrix that is formed from a, and has the same effect as the operation “ax” i.e.

0 —a., ay
a= a, 0 —Qy
—ay ag 0

This notation will be useful later on. Throughout this document, I’ve attempted to highlight (with
coloured boxes) equations which will be implemented, in the final algorithm. Hopefully this will
make things easier, when it comes to looking up the derivation of parts of the implementation.

The collisions we are simulating will involve two rigid bodies, which we’ll call object A and object
B. We will assume that when they collide the objects intersect at a single point and it is at this point
impulses will be applied to separate them. We will not cover what to do when the intersection consists
of more than one point, e.g. when a “face-face” collision occurs. Our algorithm will take as input the
point of contact and the direction the normal force acts. The impulse object A is subjected to we’ll
call p. By Newton’s 3rd law, forces are equal and opposite, so the impulse applied to object B will
be —p. The algorithm’s goal will be to update the velocities of the objects by calculating p. Since
impulses happen instantaneously the position and orientation of the objects will remain unchanged
after the collision, and so will the masses and inertia tensors.

Let us now define some variables, some of which will be used by our algorithm, and some of which
are just used in deriving important formulas.

p = The impulse applied to object A from B. Its components are represented by p,., py, p-.

f = A unit vector indicating the direction the normal force (see Section 3.1) acts on object A
from B.

e = The coefficient of restitution between objects A and B.

1 = The coefficient of friction between objects A and B.

m 4 = The mass of object A.
14 = The inertia tensor of A in its current orientation, about its CM.
r 4 = The displacement from the CM of A to the point of contact with B.
vpa = The initial velocity of the CM of A, before applying any impulses.
wp4 = The initial angular velocity of the CM of A, before applying any impulses.
v 4 = The velocity of the CM of A, after applying the impulse p.
w 4 = The angular velocity about the CM of A, after applying the impulse p.

mp = The mass of object B.
Ip = The inertia tensor of B in its current orientation, about its CM.
rp = The displacement from the CM of B to the point of contact with A.
vop = The initial velocity of the CM of B, before applying any impulses.
wop = The initial angular velocity of the CM of B, before applying any impulses.
vp = The velocity of the CM of B, after applying the impulse —p.
wp = The angular velocity about the CM of B, after applying the impulse —p.

ug4 = The initial velocity of the point of contact on A, before an impulse is applied.
u, = The velocity of the point of contact on A, after impulse p is applied.
ugp = The initial velocity of the point of contact on B, before an impulse is applied.
up = The velocity of the point of contact on B, after impulse —p is applied.
ug = ug4 — Ugp, the separation velocity of the objects, before any impulses have been applied.
u = uy — up, the separation velocity of the objects, after the impulse has been applied.

Its components are represented by u,, u,, u.

t = Time.
tstart = The time at which the collision starts.
tend = The time at which the collision ends.
ts = The time at which the integration starts.
te = The time at which the integration ends.

0 = The step size during the numerical integration (a fixed small positive value).

I = The 3 by 3 identity matrix. (Not to be confused with I which indicates an inertia tensor.)
R = A rotation matrix.
K = The collision matrix. Used to calculate u from p, see Section 3.2.
K;; represents the entry in the ¢th row and jth column of the matrix K.
K~ = The inverse of the collision matrix K. Used to calculate p from u.

(K~1),; represents the entry in the ith row and jth column of the matrix K .

W = Work done by the normal forces during the collision.
W, = Work done by the normal forces during compression.

W4 = Work done by the normal forces during decompression.

3 The Maths

This section is mostly just a subset of Chapter 3 of Brian Mirtich’s thesis. There are a few differences
though, such as a new termination condition for integration, and some proofs have been simplified.

In writing the algorithm I had to go through all the equations, deciding which ones were no longer
valid, and which needed to be implemented. Since I was going through the calculations in detail
anyway, | thought why not write it up as I go along. So this section is basically an exercise to remind
myself in my own words what I think is going on, and where the equations come from. In Section 4
I will collate all the formulas I derive, so feel free to skip ahead, but if you’re like me you might find
this section interesting.

3.1 Rotating The Space

When two objects collide it is useful to split the force acting between them into two components: a
normal force (that pushes the objects apart), and a tangential force (i.e. friction opposing the motion
of the objects). The normal force is the force perpendicular to the contact surface. The direction of
the normal force can usually be determined by examining the geometries of the objects at the point of
contact. For example if a corner of object A makes contact with a face of object B, then the normal
vector of the face should be the direction the normal force acts. There are, however, degenerate cases
which can make things difficult, for example when the contact point lies on a corner of object A and
on a corner of object B. Dealing with such things is not the aim of this document. We will assume
that the direction of the normal force has been determined somehow and is given as an input to the
collision algorithm.

The formulas we will be working with will be significantly simpler if the normal force acts in the
direction (0,0, 1)7. If the normal force’s direction is not (0,0, 1)7 we can rotate the space and objects
to get an equivalent problem in which the force’s direction is (0,0,1)7. We can then resolve the
collision using the simplified formulas and rotate the space back to its original orientation. Applying
the rotations is relatively cheap in terms of CPU usage. We will see later that part of the collision
resolution algorithm will involve integrating numerically, which is considerably more time consuming.

If the normal force acts in the direction given by the unit vector f, then we can form the appropriate
rotation transformation as follows. The axis of rotation is given by

o f x (0,0,1)T
£ x(0,0,1)T|

and the angle of rotation 6 can be calculated by looking at

£-(0,0,1)T = cos#,
If x (0,0,1)T| =sin.

From n and 6 we can construct the rotation matrix

R = (1 — cos@)nn” + cos 6l + sin fn

10

see Appendix A. (Care must be taken when f is very close or equal to £(0,0, 1) as division by zero
€rrors may occur.)

We will assume from now on that the normal force that acts on object A from B does so in the direction
(0,0,1)7.

3.2 The Collision Matrix K

In this section we will derive the collision matrix K which is instrumental in resolving the collision.
The collision matrix encapsulates the key properties of both objects. It is formed from object A and
B’s inertia tensors 4, Ip, their masses m 4, mp, and r 4, rp the relative positions of the point of
contact from their centre of mass.

Before we go any further let’s state some of the assumptions we’ll be making about the collision. We
are assuming the collision will happen over a negligible time period i.e. te,g — tsiart =~ 0. Hence we
are using impulses rather than forces, and consequently we can ignore external forces such as gravity.
During the collision we will assume that the position, mass, and orientation of the objects remain
constant (i.e. r4,rp, ma, mp, L4, Ip are all constant). You may be unhappy with these assumptions,
but without them it seems very difficult to form equations we can use to make simulations. (If you do
manage to remove/better justify these assumptions let me know).

Given the initial linear and angular velocities of objects A and B (vga, Vop,wo4a,wop) our aim is
to calculate the linear and angular velocities after the collision (va,vp,w,wp). By looking at the
linear and angular momentum of the objects we get

P = MAVA — MAVA, ra X p=Ilawas— Tawpa,
—Pp = mMBVB — MBV)B, —ry X p=Ipwp — Ipwopg,

where p is the impulse applied during the collision. Hence if we know p we can work out the linear
and angular velocities of the objects after the collision,

1 _
VA =Voa + —D, WA:w0A+IA1(I'AXp)a
ma
1 (1)
—1
VB = VoB — —D, wp =wop — I (rp x p).
mpg

To calculate p we need to look at the separation velocity of the objects at the point of contact, both
immediately before and immediately after the collision. The velocities at the points of contact before
and after the collision are

UpA = VoA T woA X T4, ug =vg+wy Xry,

Uop = VoB +wWoB X I'p, up =Vp +wp Xrp.
Using these equations we can calculate the separation velocity after the collision
u=uy —up

=VAa+wyg XTrgy—Vp —wWp Xrp

11

and similarly the initial separation velocity ug = ug4 — ugp is given by
Up = VoA +wWoa X T4 — VoB — WoB X I'B.

Hence the change in separation velocity is

u—ug=(Vat+waXxry—vp—wpxrp)— (voa +wpa XT4 — Vo —wop X Ip)

= (VA —VOA) — (VB —V()B) + (wA —ng) XTIy — (wB —wOB) Xrpg.

Applying the equations in (1) gives

1 1
u—uO:m—Ap-Fm—Bp—i—(IZl(rA><p))><r,4+(I§1(rB><p))><rB
1 1
= — —p— x (171 X — x (15! X
—pt op =1 x (I3t x P) ~ 15 X (5 (v X)
1 1 1. 1~
= —p+—p—Fal;'Fap —Tpl;'tsp
ma mp
1 1 Y - 1
=|—1I+ —I—-ral, T4 —TRI; TR |P
ma mpg

Note that the right hand side of the equation is simply a 3 by 3 matrix times p. This is the collision
matrix which we denote by K to simplify notation. So now we can write

u—uy = Kp, (2)

where

1 L1~ - 1~
K=—I0I+—I- rAIAer — rBIBer.
ma mp
Note that K is a constant during the collision due to the assumptions we made thatr 4, rg, m 4, mpg, 4,
and Ip are all constant. In the next section we will describe how to calculate u (using the fact that K
is constant), and from this we can calculate p using

p=K"t(u—u).
Once we have p, the equations in (1) give us the new velocities the objects will move with.

There is an issue of whether K ! exists, it may be that K is singular or ill-defined because either I 4
or Ip doesn’t have an inverse. We can show this is not the case by showing that K, I 4, and Ip are
all positive definite matrices (see Appendix B for a definition) and that such matrices always have an
inverse which themselves are positive definite. Since these facts are relatively important, and will be
used later, I’'ll expand the argument out a bit in Appendix B.

3.3 Calculating The Separation Velocity u

Rather than think of p as the overall impulse that gets applied during the collision, we can think of it
as a function p(¢) which indicates the overall impulse that has been applied by time ¢. Similarly we
can regard u as evolving over time. We know p(tsiart) = 0 and u(tsiere) = ug. Our aim is to work
out p(tend) and u(tend)-

12

If we differentiate impulses with respect to time we get forces. Due to the way we have orientated
the objects (see Section 3.1) the normal force is just dp,/dt (where p, is the z component of p(t),
I'1l start dropping the “(¢)” part for convenience). If the relative tangential velocity of the objects is
non-zero then the objects are said to be sliding. Friction will oppose that motion, and according to
Coulomb’s law of friction the magnitude of the force should be pdp, /dt, where p is the coefficient of
friction between the two bodies. We can deduce the direction of motion from u,, u, (components of
u). Hence the tangential forces are given by
dpj _ dp. Uy @ o dp. Uy

=K —F, =—u —F—
dt dt /ug—l—u% dt dt /U%-l-ug

We will assume that during the collision the normal force is always positive, dp, /dt > 0 (as it is con-
stantly trying to push the objects apart). This means p, monotonically increases with time, therefore
we can use it instead of ¢ to parameterize the progress of the collision. Just to be clear, now we are
thinking of p, and u as functions of p,, i.e. p(p.), u(p.). Using dp/dt we can calculate dp/dp,

dp- Uy
—H dt Pl P — U, U2 + UQ
dp _dpdt | o, VT dt x/ -
dp. — dtdp. | " @ik | dp. —hy/\Ju g
Dz 1
dt

Since both K and ug are constants during the collision we can use u — ug = Kp (see equation (2)) to
get

d
u_ e dp .
dp: dp.
Substituting dp/dp, means we have
duy /dp, — g/ Ju2 + u%,

duy/dp, | =K | _ 2 2| . 3)
Py /A Ju2 +u
duz/dpz ! 1 Y

We can use this formula to numerically integrate u (with initial conditions u = ug). However, there
are two major problems: when do we stop numerically integrating u, and what happens when u, =
uy = 0? Providing we can solve these two problems we can calculate the value of u at the end of the
collision. The value can then be used to update the velocities of the objects (see Section 3.2).

We will deal first with the question of when to stop integrating.

3.4 The Termination Condition

In Section 3.3 we derived a way to calculate u by numerically integrating a set of differential equations.
However, it is unclear at what point we stop integrating. In the frictionless case (¢ = 0) a common
approach is to use Newton’s law of restitution which says that when

Uy = —EUNy

then we should stop integrating, where e is the coefficient of restitution between the two bodies, and
U, 1s the z component of ug. Unfortunately when we start looking at collisions with friction (¢ > 0)

13

this termination rule can cause the total energy of the system to increase after a collision which does
not make sense. To remedy this, we use Stronge’s hypothesis instead, which says

W, = —e2W.,

where W,, and W, is the work done by the normal force during compression and decompression
respectively. This ensures that energy is lost by forces acting in the z direction, and since the tangential
frictional forces always oppose motion, we can guarantee that the total energy will decrease. Note that
when there is no friction Stronge’s hypothesis gives the same results as Newton’s law of restitution.

So far what I've done is identical to that covered in Mirtich’s thesis. However he was only assuming
there was one compression phase and decompression phase. I believe there could occasionally be two,
as such I interpret W, as the work done in all the compression phases, and W as the sum of the work
done in all the decompression phases. This is perhaps not what Stronge intended but that’s what I’1]
use (if you know of a better condition let me know).

So how can we calculate W, and W;? We can tell whether the collision is in a compression or
decompression phase by looking at u.. If u, is positive the objects are “moving away” from each other
and so they must be decompressing (technically we are assuming that the collision is instantaneous so
the positions remain fixed). If u, is negative the objects are in a compression phase. Once we’ve
determined whether the collision is in a compression or decompression phase we need to determine
the amount of work being done. The rate of change of work with respect to time is power, and power
is force times velocity. If we call W the work done by the normal force dp, /dt, we get

dw _ dp.
e dt

We are numerically integrating with respect to p,, not t. Fortunately changing parameters is simple

dw
dp,

Us. “4)

As we numerically integrate u we can use the above formula to update W, and W, depending on the
sign of u,. When W; = —e?WW, is satisfied we stop integrating, and use the current value of u to
calculate p and update the velocities of the objects. Fortunately, as we’ll discuss in Section 3.11, the
condition W = —e?W, is guaranteed to be satisfied eventually.

3.5 Dealing With v, = u, =0

Now lets move our attention back to the situation of numerically integrating u when u,., u,, become 0.

Y
by 0 to occur. In fact when we were deriving (3) we explicitly made the assumption that the relative

tangential velocity of the objects is non-zero.

The formula (3) given in Section 3.3 is no longer sufficient, as |/u2 4+ u2 = 0 and causes a division

Coulomb’s law of friction tells us that the magnitude of the frictional force is at most udp, /dt. When
the tangential velocity is non-zero we get the full amount of frictional force. When the tangential
velocity is zero (i.e. u; = u, = 0) we have to decide whether the frictional force is sufficient to keep
the velocity at 0. If it is we get stable sticking. If the tangential acceleration is too great for friction to

14

oppose we get unstable sticking, and the tangential velocity will become non-zero. Determining which
of these two cases we lie in is our first task.

Stable sticking occurs when the frictional force is large enough to stop the tangential forces. This

condition is encapsulated by
dp.* (dp,* _ dp.
x Y < .
\/(dt > \a) Sta
Squaring both sides and multiplying by (dt/dp.)? gives a condition using p, instead of ¢
2 2
() (@) =
dp. dp.

If stable sticking does occur then we know that du,/dp. = du,/dp, = 0 (both u, and w, should
remain as zero). Also we know du/dp, = Kdp/dp, (see Section 3.3), therefore

dp _ gl du
dp: dp:

which implies
dpx/dpz 0 du (K_1)13
dpy/dpz :K_l 0 = d z (K_l)gg
1 du. /dp. Pz \ (K1)33

where (K *1)@- refers to the entry in the ith row and jth column of K—'. (I've avoided using the
notation Kigl in case it is confused with 1/Kj;;.) Since 1 = (K~1Y)33du, /dp., we have

du, 1
= ——r— 5)
dpz (K_1)33
and consequently
dp. _ (K™ ')1s dpy _ (K™
dp. (K71)33’ dp. (K ')33

Substituting into our stable sticking condition and rearranging, gives the condition our algorithm will
use

(K7 1)13)% + (K 1)23)? < p?((K1)ss)?.

You may be a little concerned that du. /dp, = 1/(K ~')33 might be negative (which implies u, may
never become positive, and we will remain perpetually in a compression phase). Worse yet, what if
(K ~1)33 = 0? However, those of you who read Appendix B will know that K ~! is a positive definite
matrix, and hence (K ~!)33 = (0,0,1)K~1(0,0,1) > 0.

3.6 Stable Sticking

If we are in the stable sticking case, we know for the rest of the collision wu,, u, will remain at zero.

Equations (4) and (5)
aw du, 1

= U, =
dp. ~

dp. (K~ 1)s3

15

tell us how W and u, progress. These equations are sufficiently simple that we can derive a closed
form solution. Since du/dp, > 0 (see Section 3.5) we can change variables to get

aw

= (K Yaau,.
du. (K™)33us
This trivially integrates to
Kfl
W = K)ss 2)331@—1-0
where c is the constant of integration. If we call ¢, t. the time we start and end the integration we get
K—l
Wite) — Wt = L8 10)? — (e, ©

When we hit u, = u, = 0 and stable sticking occurs we could either be in a compression phase or a
decompression phase. If we are in a compression phase, we use the (6) to work out how much more
work is done until v, = 0 and we enter the decompression phase

(K)3

W (te) = W(ts) = —— 3 s (ts)?.

Once we are in a decompression phase (either from when we first hit u, = u, = 0 or from going
through a compression phase first) we know how much work we need to do in order for Wy = —e2W.,.
to hold and the collision to end. We can use (6) to work out u (tenq)

Uz (tend) = \/(KL(W(%) — W (ts)) + uz(ts)?.

At this point our algorithm will be done, we have u(t.,4), so we can calculate p(t.,4) and update the
velocities of the objects.

3.7 Unstable Sticking

If uy = uy = 0and (K 1)13)% + (K 1)23)% > p2((K1)33)? holds then we are in the unstable
sticking case. Although u,,u, are both zero, in the next “time step” at least one of them will be
non-zero. However, what their new values will be is not obvious.

To gain some insight we can use (3) (see Section 3.3) to look at some trajectories of (ug,u,), see
Figure 4 (we ignore the u, component in order to get a 2-dimensional diagram which is easier to
draw). The values of y and K used were 1 = 0.7 and

20 0 1 NER —4
K=|0 4 6 which implies K‘lz% 6 199 —120
1 6 10 -4 —120 80

(it is easy to check unstable sticking occurs). The Figure shows 16 trajectories, with start points

(ug,uy) = (rcos(2mn/16),rsin(27n/16))

16

Figure 4: The trajectories of (u,,u,) (solid black lines). The dotted lines indicate rays of
constant sliding. The initial value of (ug, u,) is indicated by the black circles. The origin
is at the intersection of the dotted lines. The blue region indicates initial conditions which
results in trajectories moving to the origin. Trajectories in the red region converge to the ray
that is at approximately 87 degrees.

where n is an integer taking values between 0 and 15, and 7 is some fixed value. The start values are
indicated by the black circles, and the black solid lines indicate how the values evolve over time (or
p-). The value of u, does not play a part in determining the trajectory of (u,u,). The value of 7 is
also irrelevant in determining the shape of the curves. The trajectory for » = 2 looks the same as for
r = 1 except it is scaled by a factor of 2.

The black dotted lines indicate initial positions that result in trajectories which appear as straight lines
moving towards or away from the origin (i.e. on these lines (du,/dp.,du,/dp.) = (Aug, Au,) for
some \). The rate at which (ug, u,) moves to or from the origin is a constant on these lines, as such
we will call them rays of constant sliding. There are three types of rays: converging, stationary, and
diverging. If (u,,u,) lies on a converging ray then it moves towards the origin. On a diverging ray
(ug, uy) moves away from the origin, and (u,, u,) remains fixed on a stationary ray. In Figure 4 the
rays of constant sliding occur at approximately 87, 209, 281, and 323 degrees (anticlockwise from the
positive u, axis). The 87 degree ray is a diverging ray, the others are converging rays.

On examination of Figure 4 we see that the 5 trajectories at the bottom end up at the origin and the
others converge towards the diverging ray at 87 degrees. A more detailed analysis would reveal that any
trajectory starting in the blue region moves to the origin and any starting in the red region converges
to the diverging ray. The rays at 209 and 323 degrees split the plane into the red and blue region.

Since Figure 4 looks the same (just smaller) when 7 is very small, we can deduce that trajectories very
close to the origin either end up at the origin or move away from the origin following very closely to
the diverging ray. Hence we will assume that when a trajectory gets to the origin (and we are in the
unstable sticking case) that it leaves along the diverging ray. (This is also the only path which would
not cause trajectories to cross.)

Resolving unstable sticking in this way is fine for the K, and p which produced Figure 4, but in

17

general can we always find a diverging ray, and if there are two or more which one do we choose to
leave along? It will turn out that in the unstable sticking case there is always a diverging ray and it is
unique. We will prove this later in Section 3.10, but for now we’ll just assume it is true.

3.8 Finding The Diverging Ray

If u, = u, = 0 and unstable sticking occurs then (u, u,) must leave the origin. As discussed in the
previous section it will leave along the diverging ray (which always exists and is unique). Hence the
first thing we must determine is the direction of the diverging ray.

On a ray of constant sliding (du,/dp, du,/dp.) should be parallel to (u.,u,). We can find the rays
of constant sliding by looking at (u,, u,) on the unit circle. Let u, = cos# and u, = sin §, hence by
(3) (see Section 3.3) we have

d
Yz _ — K1 cos0 — uKis8in6 + Kis,
dp:
du, .
= —uKs91 cos — Koo sinf + Kog.
dp.

A good way to test if vectors are parallel is to check if their cross product is 0. Hence we require

0 Uy dux/dpz 0
0| ={uy| x|duy/dp: | = 0 ,
0 0 0 Uy (duy/dp;) — uy(dug/dp,)
or equivalently
du du
0=ug— — .
B dp, “ dp.

= cos §(—pKa1 cos O — pKozsin @ + Ko3) — sin(—puKqq cos — uKiosinf + Ki3).
Recall that K is symmetric so K12 = K21, consequently our condition becomes
0= —uKlg(cos2 0 — sin? 0) + (K11 — Ka2)sinf cos + Koz cos — Kq3sin 6. @)

The roots of this equation give the angles of the rays of constant sliding.

We can reduce (7) to a quartic equation by using the trigonometry substitution of p = tan(6/2).
There exist closed form solutions to finding the roots of a quartic equation, making them very quick to
calculate. We will not discuss how to solve quartic equations in this document, but the information is
readily available online.

We have to pay special attention to when § = 7, as p becomes undefined. = is a root only when
0 = —uKy9 — Kos. Trigonometry identities tell us

1 P
cos(0/2) = ——, sin(0/2) = ——,
/1 +p2 /1 +p2
hence
cos @ = cos?(6/2) — sin?(6/2) = Ly sin @ = 2sin(6/2) cos(0/2) = 2P
1+p2’ 1+p2'

Equation (7) now becomes

(1—p?)? — 4p?
(1+p?)?

2p(1 — p?) 1—p? 2p

S ANy (O R Y .

0= _MK12 1—|—p2

which simplifies to
0= —pKi15(1 = 6p° + p*) + (K11 — K22)(2p — 2p”) + Kas(1 — p*) — K13(2p + 2p°).

To summarize

the rays of constant sliding have angles which are the solutions to
asp* + agp® + aop® + ar1p + ag = 0
where

ap = pKi2 — Kag
a; = 2K13 + 2uKoy — 2uKyy
ag = —6p K12
a3 = 2K13 + 2uK11 — 2uKo)
ag = pKi2 + Kog

p = tan(6/2).

If a4 = 0 then 6 = 7 is also a solution.

So now we know how to calculate the rays of constant sliding, but we still need to work out which one
is the diverging ray. We took the cross product of (ug, uy,0)” and (du,/dp., du,/dp.,0)T to work
out whether they were parallel, we’ll take the dot product to see if they point in the same direction. If
the dot product is positive then the ray is diverging. Rewriting this condition in terms of 8 gives

—uK1p cos’ 6 — 1Ko sin? 6 — 2uKq9sinf cos 0 + Ki3cosf + Kogsinf > 0.

3.9 Calculating u On The Diverging Ray

In the previous section we outlined how to find the diverging ray when unstable sticking occurs. Let 1)
be the angle of the diverging ray. We can resolve unstable sticking by updating (u, u,) from (0, 0) to
(e cos), esin), for some suitably small € > 0, and then proceed numerically integrating according
to (3). However, because we are on a ray of constant sliding we can find a closed form solution for the
rest of the integration which will save time.

Before we continue we need to show that du,/dp, > 0 on the diverging ray (otherwise we could end

19

up trapped in a compression phase forever). Consider

du, du
=(0,0,1
00 (44

= (—pcost), —pusin, 1) <;l;> + p(cos ¢, sinep, 0) <5:z>

— 4 CoS P

= (—pcost, —pusiny, 1)K [—psine | + u(cosvp,sinp, 0) <;Zu> .
1 Pz

The term on the left is positive because K is positive definite (see Appendix B). The term on the right
is non-negative because the dot product, ignoring the z components, of u and du/dp, is positive. (This
was the condition we used to determine whether a ray was diverging in Section 3.8.) Hence we have
du,/dp, > 0 on a diverging ray.

On a diverging ray u progresses according to

d — L cos
4 =K | —pusiny |,
dp- 1

see equation (3). The right hand side is a constant, for convenience let us call it k. We’ve just proved
that k, = du,/dp, > 0, and consequently we have

dugz dug dp, ki duy, duydp, k aw dWdp., u,

ky _
du, dp,du, k' du, dp,du, k,’ du, dp,du, k,

We can integrate to get u,, u,, and W in terms of u,

Ug(te) = z_::(uz(tE) uz(ts)) + ugz(ts),
wy(t0) = 22 (us(te) = us(t) + 8,
twm—wmhvéwmﬁﬂum% ®)

where ¢, and ¢, are the times we start and end the integration respectively.

We know the value of u, as it leaves the origin and if we are given the value of u at the end of the
collision we will have the means to calculate the final values of u, and wu,. Just as in the stable sticking
case there are two situations to consider, whether we leave the origin in a compression phase or a
decompression phase. If we are in a compression phase we can use (8) to calculate how much work
will be done until u, = 0,

W(t,) — Wi(ts) = —2—]1€Zuz(t$)2.

Once we are in a decompression phase, we know how much work has to be done in order to satisfy
W4 = —e?W., and we can use (8) to calculate u; (tenq),

Uz(tend) = \/QkZ(W(te) = W(ts)) + u(ts)?.

20

We now have all the formulas we need for our algorithm, however there are a few loose ends to tie up.
We need to show that in the unstable sticking case there always exists a unique diverging ray. We also
need to show that the algorithm will always terminate.

3.10 Proving There Exists A Unique Diverging Ray

In this section we will show that there exists a diverging ray and that it is unique when unstable sticking
occurs, i.e. when

(K™ 13)% + (K 1)23)? > p? (K 1)33)%.)

A really nice proof involving ellipses is given in Mirtich’s thesis. However, it requires a few diagrams
to properly explain, which I’'m too lazy to draw, so instead I've opted to give a more equation based
argument.

A diverging ray at an angle of 6 satisfies

Acosf —ucosf
Asinf | = K | —psind
o 1

for some A > 0 and «. Equivalently this condition can be written as
cosf\ cos 0 K3 _ (Ku K2
A (sin0> o ,LLM <sin9> * (Kgg) where M= <K21 K22 ’

cosf\ .1 (K3 _ 10
(sin@)_N)‘ (K23> where N,\—A<O 1)+,uM.

Consequently it is enough to show there exits a unique A > 0 such that N, 1(K 13, K23)T is a unit
vector, when unstable sticking occurs.

Before we continue I need to point out some observations (you may need to read Appendix B first).
Note that M is a positive definite matrix, the proof is as follows. By the definition of a positive definite
matrix we need to show (z,y)M (z,y)T is positive for all (z,y) # (0,0), but (z,y)M(z,y)T =
(z,y,0)K (z,y,0)” which is positive because K is positive definite, and hence we are done. Since M
is positive definite so is V. Positive definite matrices always have inverses hence both M ~! and N N !
exist, specifically

A (A + uEK11) (AN + pKao) — p2K1pKoy \ —pKo1 A+ pKin)

By considering the identity K K ~! = T we can deduce

K11 (K™Y 13 4+ Kio(K Yoz + Ki3(K 133 =
Ko (K1) 13 + Koo (K 1)ag + Koz (K)33 =0

u (gg;) (K Y)gs (ﬁg) - (g)

21

and therefore

which means

() =~ (i)

We can now deal with the special case of when u = 0.

N-! <K13> _1 (K13>
A\ Ko A\ Kos
Clearly there exists a unique A > 0 for which (K13, K23)7 /) is a unit vector, provided (K3, Ko3)T #

(0,0)7. If K13 = K3 = 0 then by (11) we have (K~!)13 = (K~')23 = 0, which cannot occur
because (9) tells us that

When 1 =0,

((K™H13)* + (K 1)23)% > 0.
For the remainder of this section we can assume p > 0.
The magnitude of NV, ! (K13, K23)T can be thought of as a function parameterized by). This function
is continuous for A > 0, see (10). Hence by showing that the magnitude is less than 1 for large A and
greater than 1 for A = 0 by the intermediate value theorem we know there exits a value of A for which

the magnitude is precisely 1.

As) tends to infinity it is easy to see from (10) that Ny (K13, K23)T converges to (0,0). Conse-
quently there will exist a A for which the magnitude of N L(K13, K3)7 is less than 1.

For A = 0 we have N = uM hence
1 (K3 I — (K13>
Nyt =-M .
A <K23) w Ko
N1 <K13> _ 1 <(K_1)13>
A\ Ko (K133 \ (K 1)23)
which has a magnitude greater than 1, because (9) tells us that
_ 2 _ 2
<(K1)13>+((K1)23>>1
(K133 (K 1)33

We’ve shown there exists a A > 0 which produces a diverging ray, all that remains is to prove that the
ray is unique. Suppose it is not unique, i.e. there exists A, 8, \’, 6’ such that A\, ' > 0,6 # 6" and

1 0 cos®\ (., (1 O cos0\ (K3
(A <0 1) +“M> <Sin9> = (A (o 1) +”M> <sin0'> = <K23 '
cos) — cos &’ , [cos &’ cos 0
M <sin0—sin9’> =A (sin@’) —A (sin&) ’
hence
cosf —cos 0\ u cos —cos\ [cosf —cos® r N cos 0’ Y cos 0
sinf —sing’) " sin@ —sin®) \sinf —sin@’ sin &’ sin 6
= (A + X)(cosOcosf +sinfsind — 1)
_ _%()\+)\/) <C089—COS@I>T (cosﬁ—cosﬁ’) '

sin @ — sin &’ sin @ — sin &’

Substituting (11) gives

Therefore

22

This is a contradiction as the right hand side is positive (as M is positive definite, ;1 > 0, (cos€ —
cosf,sinf —sin#’) # (0,0)) and the left hand side is clearly negative. This completes the proof that
in the unstable sticking case there exists a unique diverging ray.

As an afterthought it occurred to me that the condition | Ny (K13, K23)”| = 1 can be written as a
quartic equation in A. This quartic equation can be used as an alternative way to find the diverging ray
to that given in Section 3.8.

3.11 Proving The Algorithm Terminates

Showing the algorithm terminates isn’t too hard. All we need to do is show that eventually du, /dp,
becomes and remains larger than some fixed positive constant. This ensures that u, will eventually
become positive and that the termination condition Wy = —e?W, will be satisfied.

First let’s consider what happens if the trajectory of u starts on a ray of constant sliding (note that
du/dp, is a constant on a ray of constant sliding). If we start on a diverging ray, we’ve shown
du/dp, > 0 (see Section 3.9). If we start on a converging ray we’ll eventually end up at the origin at
which point we check for stable or unstable sticking. If unstable sticking occurs we’d leave along the
diverging ray which is a case we’ve already covered. If stable sticking occurs we’ve shown du /dp, =
1/(K~Y)33 > 0 (see Section 3.6). If we’re on a stationary ray then du,/dp, = duy/dp, = 0, in
which case we can show du. /dp, = 1/(K ~1)33 > 0 (the argument is the same as that given for stable
sticking). Hence if we start on a ray of constant sliding the algorithm will terminate.

If the trajectory doesn’t start on a ray of constant sliding then one of two things can happen. The
first is that the trajectory reaches the origin, at which point stable or unstable sticking occurs, which
we’ve shown causes the algorithm to terminate. The second is that the trajectory converges to a ray of
constant sliding. (We will prove later that there always exists at least one ray of constant sliding.) To
prove we have convergence to a ray we look at the trajectory in terms of polar coordinates (r, #) rather
than (uz, u,). We can easily show that

do 1 du du dr du du
- - (sin dp. -+ cos dpz) , dp- Ccos dp- + sin -

Note that df/dp, is 0 on a ray of constant sliding. It is not too hard to show that § will converge
monotonically to a root of df/dp, (as rdf/dp, and dr/dp, are bounded continuous functions of 6).
However, the 1/r factor does require some special attention (we have to show it doesn’t cause 6 to
converge to something which is not a ray of constant sliding). I've decided to omit the technical
details, but for those interested see Appendix C.

On a converging ray dr/dp, < 0. If 6 converges to a converging ray then (by the continuity of dr/dp,
and the monotonicity of the convergence of #) eventually dr /dp, will become and remain smaller than
some fixed negative value. This means that the trajectory must end up at the origin, which will cause
the algorithm to terminate. On a stationary and diverging ray we’ve shown du/dp, > 0. Hence if ¢
is converging to a stationary or diverging ray (by the continuity of du,/dp,) eventually du,/dp, will
become and remain larger than some fixed positive constant, causing the algorithm to terminate.

All that is left is to show that there always exists a ray of constant sliding. The rays occur at the roots

23

of
—,uKlg(cos2 0 — sin? 0) + u(K11 — Ka2)sinf cos + Koz cos — Kizsinf, (12)

see equation (7) in Section 3.8. Using the fact that a cos x + bsin x can always be written in the form
asin(x + £) we can rewrite (12) as

c18in(260 + c2) + c3sin(6 + c4), (13)

where ¢y, c2, c3, ¢4 are constants which can be determined from (12). Clearly (13) has a root if ¢c; = 0
or c3 = 0. The only interesting case to consider is if ¢; # 0 and c3 # 0. We will show there exists a
root by showing there exists a value of # for which (13) is positive and a value for which it is negative.
Hence by the intermediate value theorem a root must exist.

We can assume c3 > 0 (the argument is virtually identical for ¢3 < 0). Note that c3sin(6 + ¢4) is
positive when 6 lies in the region (—cy, ™ — ¢4). Furthermore ¢ sin(260 + c2) goes through an entire
oscillation in that region and hence is at some point positive. Therefore there exists a value of 6 €
(—c4, m—c4) for which (13) is positive. Similarly we can show there is a value of 0 € (7 —c4, 2T —c4)
for which (13) is negative. Consequently by the intermediate value theorem there exists a root.

24

4 The Algorithm

The algorithm is longer and scarier looking than I intended but it is not all that complicated, do not be
put off by first impressions. In Section 5 there is a simplified version for 2D collisions which you may
prefer.

The algorithm will involve numerically integrating a set of differential equations. We will use Euler’s
method to do the integration (other methods could be used but I've chosen Euler’s method as it is
simple and robust). As part of the method we need to choose a step size § > 0. The smaller the step
size the more accurate the algorithm will be, but the longer it will take.

The algorithm takes as input

63 €, W, f7 ma, IAa A, VoA,WoA, MB, IBv rp,voB,wWoB,
and returns as output
VA’ wA’ VB’ wB'

The description of the algorithm is given below.

1. We need to rotate the space so that the normal force acts in the direction (0,0, 1)

Calculate the rotation matrix
R = (1 — cos@)nn’ + cos 0l + sin fn

where ()T
f x(0,0,1 T . T
n:m, COSQIf'(O,O,l) y Sln9:|f><(0,0,1) |,

and n is formed from the components of n,

0 —-n, ny
n=| n, 0 —Ng
—Ny Ng 0

(If f is close or equal to £(0,0, 1) the above formulas may cause a division by zero to occur,
this is a special case which must be dealt with separately.) Once we have calculated R we can
rotate the problem by replacing

IA7 A, VoA, wWoA, IBa rp,voB,wWoB

with
RI4R™, Rra, Rvoa, Rwoa, RIpR™, Rrg, Rvop, Rwop

respectively. Note that taking the transpose of R is a quick way to calculate its inverse (R] =
R7Y).

2. Calculate the initial separation velocity
Up = Vo4 +wWoA X T4 — Vo — WoB X Ip.

(It might be a good idea at this point to check that the z component of ug is negative, if it isn’t
then the objects aren’t colliding and the algorithm should terminate.)

25

Calculate the collision matrix

1 1
K= —T+—T—fal;'Fs—ipl;'Fs,
ma mp

where T 4 and rp are formed from the components of r4 and rp respectively (see Step 1, or
Section 2).

Set
u = Uy, I/VCZO7 Wd:O.

3. The integration loop.
(a) If up = u, = 0 (or approximately 0 for robustness) sticking has occurred, exit the loop

and go to Step 4.

(b) Sticking has not occurred.

Check whether we are in a compression phase or a decompression phase. If u, < 0
increment W, by u,d, otherwise increment W by u,4.

Update u to
Uy — g/ fuz + ug%
uy | +OK | — /o Ju2 + u?
Uy 1

(c) If Wy > —e?W.,. the integration has ended, go to Step 7, otherwise go to Step 3a to continue
the integration.
4. Sticking has occurred, check if it is stable or unstable.

If (K7 1Y)13)% + ((K71)23)% < p2((K~1)33)? holds then go to Step 5 else go to Step 6.
5. Stable sticking has occurred.

(a) If u, < 0 go to Step 5b else go to Step 5c.
(b) We are in a compression phase.

Increment W, by — (K ~1)33u2/2, set u, to 0, then go to Step 5c.
(c) We are in a decompression phase.

Set the value of u, to

2
ot e

(You may also want to remove any rounding errors in u, and u, by setting them to 0.)
Go to Step 7.

6. Unstable sticking has occurred.

(a) We need to find the unique diverging ray of constant sliding.
The rays of constant sliding have angles which are the solutions to

a4p4 + a3p3 + a2p2 +aip+ag=0

26

where
ag = K12 — Ko3,

a1 = 2K13 + 2uKo — 2pkKay,
az = —6uKio,
az = 2K13 + 2ukKy1 — 2pKog,
ay = puKio + Kas,
p = tan(0/2).
If a4 = 0 then § = 7 is also a solution. There exists closed form solutions to quartic
equations (which can be found online). Once we have determined the rays of constant

sliding we need to determine which one is diverging (there will be precisely one). The
diverging ray is the one which satisfies

— K cos’ 6 — 1Ko sin? 6 — 2uKq9sinf cosf + Ki3cos 0 + Kogsinf > 0.

(b) Let %) be the angle of the diverging ray (as determined by the previous step). Set k, ky, k.
according to

ky — L Ccos Y
ky| =K | —psiny
k. 1

Store a copy of the value of u in .

If u, < 0 go to Step 6¢ else go to Step 6d.
(c) We are in a compression phase.

Increment W, by —u?/(2k,), set u, to 0, then go to Step 6d.
(d) We are in a decompression phase.

Set the value of u, to

2k, (—e2W, — Wy) + u2.

Go to Step 6e.
(e) Update u, to

k
f(uz - uold) + Uy,
z
and update u, to
k
?y(uz — uold) + Uy
z

We have now calculated the final value of u, go to Step 7.

7. We know the value of u at the end of the collision. We can use it to calculate the impulse,
p=K l(u—-u).

From this we can calculate the new velocities of the objects

1 -1
VA = VoA + —DP, wa =woa+ I, (ra xp),
ma
1 _
VB =VoB — — P, wB:wOB—IBl(rB X Pp).
mp

27

8. The final step is to rotate the space back to its original orientation. We replace
VA, WA, VB, WpR

with
R71VA, Rilw‘A, RilvB, Rile

respectively. The algorithm terminates outputting v, w4, v, wp.

Often collisions will happen with essentially immovable objects, such as the ground. We can simulate
this by giving the immovable object’s mass and inertia tensor very large but finite values. Another
solution is to derive the equations and algorithm under the assumption that one object is immovable
and its motion remains unaffected by the collision. The equations and the algorithm are virtually
identical so I will omit the details but the necessary modifications to the algorithm are as follows. If
object A is immovable simply replace occurrences of 1/m 4 and Igl with 0 and the zero matrix (a
matrix whose entries are all zero) respectively. Similarly if object B is immovable replace 1/mp and
I 51 with 0 and the zero matrix.

28

5 2D Collisions

It occurred to me as an afterthought that if we are only interested in objects living in a 2-dimensional
plane (i.e. the objects are planar, there is no z-component to their velocities, and all rotations occur
about the z-axis) then the collision resolution algorithm becomes significantly simpler. This is because
all the trajectories of u would lie on rays of constant sliding, hence we can write down closed form
solutions to the integration avoiding the costly numerical integration loop. Also finding the diverging
ray becomes trivial, meaning we don’t have to implement a quartic equation solver.

I suspect a fair number of people would be interested in the simplified 2D version of the algorithm, so
I’ve provided it. I won’t go over the maths as 2D collisions are just a special subcase of 3D collisions.

5.1 Variables And Conventions

Before we delve into the algorithm I should highlight the fact that I'm lazy and have re-used the
variable names from the 3D algorithm. Unfortunately the dimensionality of some of the variables
have changed which may cause some confusion (the meanings of the variables, however, remain un-
changed).

The variables
e, ,ma,mpg, We, Wy

remain as scalars. We are assuming the collision takes place in the xy-plane so there is no longer a
need for the z-component in vectors. The vectors

P,u,u9,r4,rp,voa, VoB, VA, VB, fa

are now all 2-dimensional. The rotation matrix R and the collision matrix K (as well as their inverses)
are 2 by 2 matrices (rather than 3 by 3). In place of 3 by 3 matrices representing inertia tensors we
instead use the moment of inertia in the 2D case. Hence I4 and Ip become scalars. The angular
velocities
WoA,WoB, WA, WRB,

also become scalars. The convention we will use for angular velocities is that a positive value indi-
cates anticlockwise motion. Just to be crystal clear, if object A has its centre of mass at the origin
and is experiencing a constant angular velocity of w4 then the point (1,0) on A rotates to the point
(cos(wat),sin(wat)) at time ¢.

5.2 The Algorithm

As in Section 4 the algorithm looks long and horrible. However, it is really not that bad. It should be
easier to implement than its 3D counterpart and take significantly less time to resolve collisions.

The algorithm takes as input

e, f,ma,la,ra,voa,woa,mB,IB, TR, VoB,WoB,

29

and returns as output
VA, WA, VB,WRB.

The description of the algorithm is given below.

1. We need to rotate the space so that the normal force acts in the direction (0, 1)

_ f _fa:
R‘(fi fy>’

where f,, f, are the components of the unit vector f.

Calculate the rotation matrix

Once we have calculated R we can rotate the problem by replacing
raA,V0A,YB, VOB

with
Rra, Rvoa, Rrp, Rvop

respectively.

2. Calculate the initial separation velocity

—TA —TB
up = VoA + wo4 V) —vop —woB v,
TAx TBx
where 7 4., T Ay, T Bz, T By are the components of r 4 and r g. (It might be a good idea at this point

to check that the y component of ug is negative, if it isn’t then the objects aren’t colliding and
the algorithm should terminate.)

Calculate the collision matrix

2 2
K = <1 + 1> <1 O) + i < "y _TA;TAZ/> + i < "By _TB;”TB?J>)
mag Mg 01 Ia \—Taz7ay T4 Ip \—7BzTBy Thy
Set
u = up, WC:07 Wd:O

3. Check the type of ray we are on.
(We will store the value of du,/dp, and du,,/dp, in k, and k,, respectively.)

(a) If u, = 0O sticking has occurred, go to Step 5.

(b) If u, > 0 set
k) —
()= (1)

If k; > 0 we are on a diverging or stationary ray go to Step 8.

and check the value of k.

If &, < 0 we are on a converging ray go to Step 4.

(c) Ifu, < Oset
ka\ _ o (1
(i) = (5),

If &, > 0 we are on a converging ray go to Step 4.

and check the value of k.

If k; < 0 we are on a diverging or stationary ray go to Step 8.

30

4. We are on a converging ray.

(a) Set
ky
Uorigin = Uy — ?ux
€T
(Uorigin 1 the value u, would reach if we integrated u until u,, became 0.)
(b) If Uorigin <0
then we’ll reach the origin (i.e. u, = 0) before we enter the decompression phase, set

| Ugly kyu?
ke 2k2 7

W, =

then set
ug = 0, Uy = Uorigin,
and go to Step 5.

(©) If 0 < uprigin < —e€uy
then we’ll reach the origin before the decompression phase finishes, set

u; Uorigin
Wcz—ﬁ, Wa = ij,)
then set
uy =0, Uy = Uorigin,
and go to Step 5.

@ 1If —CUy < Uorigin
then the decompression phase finishes before we reach the origin, update u, to

k
Uy — (1 + e)iuyv
ky
then update u,, to —eu,, and go to Step 9.

5. Sticking has occurred, check if it is stable or unstable.

If |K12| < pK71 holds then go to Step 6 else go to Step 7.

(1) = (aas)

7. Unstable sticking has occurred. We need to find the unique diverging ray.

() =)

If k; > 0 then go to Step 8, otherwise set

6. Stable sticking has occurred.

Set

then go to Step 8.

Set

then go to Step 8.

31

8. We are on a diverging/stationary ray (or stable sticking has occurred).

(a) Store a copy of the value of u, in ugg.

If u, < 0 go to Step 8b else go to Step 8c.
(b) We are in a compression phase.

Increment W, by —ug/(2ky), set u, to 0, then go to Step 8c.
(c) We are in a decompression phase.

Set the value of u, to

\/2hy (—e2We = W) + 12,

Update u,, to

Kz
?(uy - uold) + Uy
Y

We have now calculated the final value of u, go to Step 9.
9. We know the value of u at the end of the collision. We can use it to calculate the impulse,
p=K""(u—up).

From this we can calculate the new velocities of the objects

1 1 [—ray
VA =Voa+ —D, wq = woA + P
ma Ix TAx
1 1 (—rpy
VB =VoB — —D, WB = WoB — 7 ‘P
mp Ip \ 7Bz

10. The final step is to rotate the space back to its original orientation.

We replace v4,vp with R~1v 4, R~ lvp respectively. Note that taking the transpose of R
is a quick way to calculate its inverse (RT = R~'). The algorithm terminates outputting

VA,WA,VB,WB.

The algorithm can be modified to handle immovable objects just as we did in Section 4. We simply
replace instances of 1/m 4 and 1/14 with O if object A is immovable, or 1/mp and 1/1p with 0 if
object B is.

32

6 Final Remarks

Let me re-iterate that the majority of the arguments, equations, and algorithms in this document come
from Brian Mirtich’s thesis. I urge you to check it out for more details (as well as references to the
work which led to this algorithm).

I haven’t been paid to write this document (I’'m currently unemployed). I’ve spent my free time writ-
ing it because I think Mirtich’s algorithm is sufficiently interesting and useful that the error I found
deserves to be corrected. I make no claims to the validity or accuracy of the equations / arguments
/ algorithms I’ve outlined, so don’t blame / sue me if you base some critical program on them and it
ends up failing and or crashing causing damage.

I’ve given out my e-mail on the title page of this document, so get in touch if you found this document
useful or you have some complaint. (I can’t guarantee I’ll reply to your e-mail or that it won’t end up
accidently in my junk mail folder, also don’t contact me via instant messenger as I may block you.)

I’m happy to receive e-mails about the following:

e You’ve found an error / mistake.
e You agree / disagree that there is a mistake in Mirtich’s thesis.

e You don’t understand the arguments presented and want some help. Please don’t ask me to
explain basic things like vectors, matrices, positive definite matrices, etc. ask on the various
online forums first, and if you’re still stuck then get in touch.

e You have some suggestions to improve the mathematical argument or the document in general.
e You have some real-life data which shows the algorithm is good / bad at simulating collisions.

e You’re implementing one of the algorithms (I’'m particularly interested in e-mails on this topic).
It doesn’t matter whether your implementing them for some serious large commercial project or
just personally for fun.

e You are using part or all of the document to teach others.

e You refer to this document in some way (e.g. an html link to this document, or a reference in an
academic paper).

e You’ve found the document interesting / useful and just want to let me know.

Do get in touch as I'm interested in what people think of this document and how it gets used.

33

Appendices

A Constructing The Rotation Matrix

Given a unit vector n which gives the axis you want to rotate about, and an angle 6, we can construct
a rotation matrix R. To work out what the formula for R should be, we will write down a formula in
terms of n and 0 for Rx, where x is a generic vector.

First we’ll carefully choose three orthogonal axes represented by the vectors e, ez, e3. Let e; = n,
this is a natural choice and will help make rotating about n easier. The component of x in this direction
is (n-x)n. Let e = x — (n - x)n, this is the part of x perpendicular to n. The remaining axis e3
is determined by the other two since we want the axes to be orthogonal. Hence e = e; X e3 =
n X (x — (n-x)n) = n x x. The magnitude of e; is 1 as it is just the unit vector n. The magnitude
of ey is the same as es (due to the fact that all three axis are orthogonal and e3 = e; X eg, hence
les| = |e1||e2| = |ez2]). This will be useful in simplifying the calculation.

We can write x in terms of the orthogonal vectors, as x = (n - x)e; + ley + Oes. Rotating about e;
is now very simple, we get
Rx = (n-x)e; + cosfes + sin fes.

Substituting the values of ey, eo, €3, tells us
Rx=(n-x)n+cosf(x — (n-x)n)+sinfn x x
= n(n"x) + cosf(x — n(nT'x)) + sin Hiix
= (nn” + cos (I — nn”) + sin fn)x.
Since x was a generic vector, we are free to remove it from both sides of the equation, to get the desired

result that
R = (1 —cosf)nn’ 4 cos 6l + sin 6.

34

B Showing K Is Positive Definite

Firstly, let’s define the term positive definite. A symmetric n by n matrix M is positive definite if for
all non-zero vectors x € R”, x” Mx > 0. If instead the weaker property x” Mx > 0 held true then
we would call M positive semidefinite.

Before we prove K is positive definite we need to outline some properties of positive definite matrices.
If M, is positive definite and My is positive (semi)definite then M; + M is positive definite, because
xT(M 1+ Ma)x = xT Mix + xT Myx > 0. Another useful fact is that every symmetric matrix S can
be written in the form S = RT DR, where R is an orthogonal matrix (a matrix which is equivalent to a
rotation transformation) and D is a diagonal matrix (a matrix whose only non-zero entries are D;; for
1 = 1,...,n). Furthermore the entries on the diagonal of D are the eigenvalues of S. I won’t attempt
to prove these facts, but they should be covered in any undergraduate text on linear algebra.

Next let us show that positive definite matrices always have inverses which themselves are positive
definite. A positive definite matrix is symmetric so can be written as R” DR for an appropriate choice
of orthogonal matrix R and diagonal matrix D. Hence x’ R DRx = (Rx)T D(Rx) > 0 holds for
x # 0. Since R is orthogonal it is invertible (R~! = RT) therefore Rx can be any non-zero vector,
which implies D must be positive definite. It is not hard to see that a diagonal matrix is positive definite
if and only if it has positive values on its diagonal. We can construct the inverse of a diagonal matrix
D by taking the reciprocal of its diagonal entries. Using these facts we can construct RT D! R the
inverse of the positive definite matrix RT D R. The inverse has eigenvalues which are the reciprocal of
the original matrix, hence all its eigenvalues are still positive, it is symmetric, and so is also positive
definite.

We can show that K is positive definite, by showing it is a sum of positive (semi)definite matrices.
Clearly I/m 4 is positive definite as is [/mp. We need only show —t Alglf 4 1s positive semidefinite,
the argument for —f'Bfglf'B will be identical. Note that f'z; = —T4, hence we are equivalently
trying to show fﬂ];lf‘ A 1s positive semidefinite. Since inertia tensors are symmetric with strictly
positive eigenvalues we know they are positive definite and hence have inverses which are also positive
definite. Let us write / ;1 as RT DR for some appropriate choice of orthogonal and diagonal matrices.
xTF 1 ax = (Rt 4x)T D(RF 4x). Since R¥ 4x is simply a vector (which may be zero) and D has
positive diagonal entries, we can safely say that f'glglf' A 1s positive semidefinite, and therefore K is
positive definite and has an inverse which is also positive definite.

35

C Showing Trajectories Converge To Rays

In Section 3.11 we described the motion of the trajectory of u in terms of polar coordinates. Specifi-
cally we showed that df/dp, and dr/dp., which we’ll denote by ¢’ and r/ (to simplify notation), could
be written as

f0)

9/277 T,:g(g),

where f(6), g(6) are continuous bounded periodic functions with period 27r. The rays of constant
sliding occur at values of 6 for which f(#) = 0. Our task is to show that for trajectories not starting
on a ray of constant sliding that 6 converges monotonically to a root of f(#). We can assume that as
p. increases the trajectory does not hit the origin (i.e. r # 0) otherwise the algorithm would terminate.
We can also assume there is at least one root of f(6).

Let (70, 6p) be the start point of the trajectory in polar coordinates. We do not start on a ray of constant
sliding so f(6p) # 0. Without loss of generality we can assume f(6p) > 0. Consequently 8’ > 0 and
initially @ increases. Let 0,0 be the first root of f after 6y (0,..,+ always exists because f is periodic
with at least one root). Hence as p, increases 6 continually increases towards 6,.,,: (f cannot decrease
until it passes O,..0¢). To show 6 doesn’t converge before it reaches 0,.,.¢, we will prove that 6 is able
to reach any 0.,,4 € (0o, Or00t) after a finite increase in p,.

Let r},,. be the largest value of r’ (recall that 7" is bounded so 7/, is finite). If v/, . < 0 then set
7! e = 1. Let fiin be the smallest value of f in the region [0, 6c,q4] (note that f,,;, > 0). Hence as

p, increases the following holds
9/ > f min
ro + T;mzmpz

Consequently we can prove that 6 reaches 6,,,; before p, becomes

To
pP= (exp((eend - GO)T;na:p/fmin) - 1) /
Tmaa:
because
P Fomi Fmi P
mwn mwn !

—————dp. = 1 =04 — 0.
~/0 ro + T;na;vpz Pz T7/7Laa7 n(ro * Tmapo) 0 end 0

Although not strictly necessary for the arguments given in Section 3.11 we can also show that 6 never
reaches 0,,,; after a finite change in p,. If it did, then let 7,,,;, > O be the smallest value of r the
trajectory reached. Due to the nature of f we can show that there exists a finite constant ¢ > 0 and
0. € (6o, 0yro0t) such that when 0 € (6., 6,001), 0’ satisfies

(97"0015 - 9)6

Tmin

0 <

Consequently the value of p, when 6 reaches 6,.,,: — € (for some small € > 0) must be more than

97‘0ot*€ . .
/ fmin__ 4o = " 10 (8,000 — 0c) /).
0. (0

root — 9)6 (&

Hence the closer we get to ;... the larger the change in p,, in fact it tends to infinity. Therefore 6
never reaches 6,.,,; but converges monotonically to it.

36

